

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

134

Abstract—The extensible Markup Language (XML) is a World

Wide Web Consortium (W3C) recommendation which has widely

been used in both commerce and research. In recent years, we have

witnessed a dramatic increase in the volume of XML digital

information that is either created directly as an XML document or

converted from another type of data representation. The importance

of XML is mainly due to its ability to represent different data

types within one document, solving the problem of long-term

accessibility, and providing a solution to the problem of

interoperability (Al-Hamadani et al., 2009). Extensible Markup

Language (XML) [XML 1.0 (Second Edition) W3C

Recommendation, October (2000)] is proposed as a standardized

data format designed for specifying and exchanging data on the

Web. With the proliferation of mobile devices, such as palmtop

computers, as a means of communication in recent years, it is

reasonable to expect that in the foreseeable future, a massive

amount of XML data will be generated and exchanged between

applications in order to perform dynamic computations over the

Web. However, XML is by nature verbose, since terseness in XML

markup is not considered a pressing issue from the design perspective

[7]. In practice, XML documents are usually large in size as they

often contain much redundant data. The size problem hinders the

adoption of XML since it substantially increases the costs of data

processing, data storage, and data exchanges over the Web. As the

common generic text compressors, such as Gzip], Bzip2, WinZip,

PKZIP, or MPEG-7 (BiM) , are not able to produce usable XML

compressed data, many XML specific compression technologies

have been recently proposed. The essential idea of these

technologies is that, by utilizing the exposed structure information

in the input XML document during the compression process, they

pursue two important goals at the same time. First, they aim at

achieving a good compression ratio and time compared to the

generic text compressors mentioned above. Second, they aim at

generating a compressed XML document that is able to support

efficient evaluation of queries over the data. The aim of this paper is

to introduce the system which has the ability of compressing the

XML document and retrieving the required information from the

compressed version with less decompression required according to

queries. The system first compressed the XML document by proposed

algorithm. The compressed file is divided into different relational

databases doing so there is no need to decompress the complete

file for retrieving the results of any query. Only the required

information is decompressed and submitted to the user. The

average compression ratio of the designed compressor is

considered competitive compared to other queriable XML

compressors.

 Index Term: - XML, Compression Ratio, Compression Time,

Decompression Time

I. INTRODUCTION

XML: An Overview

XML or extensible markup language is a markup language

for documents containing structured information. Structured

information could be content and some indication of what

role that content plays. XML specifies the structure and

content of a document. A markup language is a mechanism

to identify structures in a document. XML has a simple,

flexible text format. It is a simplified subset of SGML. Here

is an XML snippet:

 <Student SID = “S1234”>

 <LastName>Smith</LastName>

 <FirstName>Joe</FirstName>

 <MInitial>M</MInitial>

 <Address>620 12th Ave, Coralville</Address>

 </Student>

 XML example

Before the rise of the internet, 1980s witnessed the

invention of Standard Generalized Markup Language

(SGML) as a way to display information dynamically. Later,

in 1995, W3C recommended SGML to be used for the internet.

Problems occurred when using SGML included the lack of

widely supported style sheets, complexity and instability in

the software that were using it, and the difficulties in

interchanging SGML data due to its varying levels among

SGML software packages. In 1996, the first XML working

draft was intended to be a powerful substitute to SGML. It was

first recommended by the World Wide Web Consortium

(W3C) in 1998 to be used as a mark-up language for storing

and exchanging data through the web. The most recent

recommendation was published in 2008, which is the fifth

edition of the XML (W3C, 2008). In a very short period of

time, XML has become the basis for data exchange through

the Internet. This is due to its several features such as the

following (NG et al., 2006; Groppe, 2008),

1. Readability: XML is readable by both human and

machine. This means that the data represented by XML can

be used by different users and by different parsing code.

2. Interoperability: This is the ability of the hardware and

software to use XML documents without the need to make

any changes to the software or the data itself. This means that

XML data is stripped of any dependency on software and

machine.

3. Long term usability: Since XML documents are

represented using the Unicode; these documents are

expected to stay in secure storage and usage for years (Augeri

et al., 2007).

4. Extensibility: This means that there are no fixed set

of tags that should be used to represent data.

Compression and Query Evaluation over XML

Databases
Vijay S. Gulhane, Dr. M.S. Ali

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

135

5. Generality: XML documents have the ability to represent

different kinds of data representation such as images, sounds,

videos, texts, etc.

6. Internationality: Almost all written languages can be

represented in XML documents since they support Unicode

(Norbert and Kai, 2004).

In spite of all these advantages, XML has also some

weaknesses:

1. They have a huge amount of redundancy which makes

these documents demand high storage memory to be

archives, high band width to be transmitted, and high cost to
be processed.

2. The huge amount of technologies surrounding it

complicates the use of these documents such as schema,

DTD, XSLT, SAX, DOM, XPath, XQuery. These

technologies render the use of these documents

somewhat difficult especially with naive users or in cases

where these technologies are absent, it would be just as

difficult as they are considered necessary for dealing with

XML documents.

3. The problems that can occur when dealing with the

document namespace should be carefully sorted out

otherwise other problems and complications could occur
during the processing of these XML documents.

A. XML Compression Systems

XML or extensible markup language is a markup

language for documents containing structured information.

Structured information could be content and some indication of

what role that content plays. XML specifies the structure and

content of a document. A markup language is a mechanism to

identify structures in a document. XML has a simple, flexible

text format. XML representations are very large and can be up

to ten times as large as equivalent binary representations.

XML Compression should be done for the following reasons.
1. There is lot of "redundant" data in XML documents,

including white space, and element and attribute names.

2. Its self-describing and document size is larger than other

formats. This will affect query processing.

3. As a self-describing format, XML brings flexibility, but

compromises efficiency.

4. Most XML documents are stored in file systems, so we

need an efficient way to store file-based XML.

5. XML is the lingua franca of web services, thus necessitating

large volumes of XML data to be sent over networks. Reducing

data size helps conserve network bandwidth. There are a
number of XML compression techniques available today which

were developed, and tested over the last few years.

In the survey of XML-conscious compressors it has been

found that the existing technologies indeed trade between

these two goals. For example, XMill [H. Liefke et al] needs

to perform a full decompression prior to processing queries

over compressed documents, resulting in a heavy burden on

system resources such as CPU processing time and memory

consumption. At the other extreme, some technologies can

avoid XML data decompression in some cases, but

unfortunately only at the expense of the compression

performance. For example, XGrind [P.M.Tolani et al]

adopts a homomorphic transformation strategy to transform

XML data into a specialized compressed format and support

direct querying on compressed data, but only at the expense of

the compression ratio; thus the XML size problem is not

satisfactorily resolved. In regard to the importance of

achieving a good level of performance in both compression

and querying, it has been found that the current research work

on XML compression does not adequately analyze the related

features.

B. Need for Compression

As evident from the snippet, XML representations are very

large and can be up to ten times as large as equivalent binary

representations. Consider the following:

1. There is lot of "redundant" data in XML documents,
including white space, and element and attribute names.

2. Its self-describing and document size is larger than other

formats. This will affect query processing.

3. As a self-describing format, XML brings flexibility, but

compromises efficiency.

4. Most XML documents are stored in file systems, so we

need an efficient way to store file-based XML.

5. XML is the lingua franca of web services, thus

necessitating large volumes of XML data to be sent over

networks. Reducing data size helps conserve network

bandwidth.

C. Desirable Features of XML Compression

Following are some desirable quality features for XML

compression technology.

I. Effective Compression.

ii. Expressive Query Language and Efficient Querying

Engine.

iii. Minimal User Intervention and Auxiliary Structures

II. PROPOSED XML COMPRESSION METHODOLOGY

The XML Compressor supports compression of XML

documents. The compression is based on tokenizing the

XML tags. The assumption is that any XML document has a

repeated number of tags and so tokenizing these tags gives

a considerable amount of compression. Therefore the

compression achieved depends on the type of input

document; the larger the tags and the lesser the text content,

then the better the compression. The goal of compression is to

reduce the size of the XML document without losing the

structural and hierarchical information of the DOM tree. The

compressed stream contains all the "useful" information to

create the DOM tree back. The compressed stream can also be

generated from the SAX events. XML Parser for Java can

also compress XML documents. Using the compression

feature, an in memory DOM tree or the SAX events generated

from an XML document are compressed to generate a binary

compressed output. The compressed stream generated from

DOM and SAX are compatible, that is, the compressed

stream generated from SAX can be used to generate the DOM

tree and vice versa.

A.XML SERIALIZATION AND COMPRESSION

An XML document is compressed into a stream by means

of the serialization of an in-memory DOM tree. When a

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

136

large XML document is parsed and a DOM tree is created

in memory corresponding to it, it may be difficult to satisfy

memory requirements and this can affect performance. The

XML document is compressed into a stream and stored in an

in-memory DOM tree. This can be expanded at a later time

into a DOM tree without performing validation on the XML

data stored in the compressed stream. The compressed stream

can be treated as a serialized stream, but the information in

the stream is more controlled and managed, compared to

the compression implemented by Java's default serialization.

There are two kinds of XML compressed streams: DOM based

compression: The in-memory DOM tree, corresponding to

a parsed XML document, is serialized, and a compressed

XML output stream is generated. This serialized stream

regenerates the DOM tree when read back. SAX based

compression: The compressed stream is generated when

an XML file is parsed using a SAX parser. SAX events

generated by the SAX parser are handled by the SAX

compression utility, which handles the SAX events to

generate a compressed stream. In addition to the above

methodology the implemented proposed compression

methodology compresses XML documents and works as

follows:

XML Compression
Input: XML File

Output: Compressed XML File In addition to the above

methodology the implemented proposed compression

methodology compresses XML as well as HTML documents

and works as follows:

 Any content within <pre>, <text area>, <script> and

<style> tags will be preserved and remain untouched (with

the exception of <script type="text/x-jquery-tmpl"> tags

which are compressed as HTML). Inline JavaScript inside tags

(onclick="test ()") will be preserved as well. You can wrap

any part of the page in <!-- {{{ -->...<!-- }}} -->comments to
preserve it, or provide a set of your own preservation rules

(out of the box <?php...?>, <%...%>, and <!--#... --> are also

supported)

 Comments are removed (except IE conditional comments). \

 Multiple spaces are replaced with a single space.

 Unneeded spaces inside tags (around = and before />) are

removed.

 Quotes around tag attributes could be removed when safe

(off by default).

 All spaces between tags could be removed (off by default).

 Spaces around selected tags could be removed (off by

default).
 Existing doctype declaration could be replaced with simple

 <! DOCTYPE html>

Declaration (off by default).

 Default attributes from <script>, <style>, <link>, <form>,

<input> tags could be removed (off by default).

 Values from Boolean tag attributes could be removed (off

by default).

 JavaScript: pseudo-protocol could be removed from inline

event handlers (off by default).

 http:// and https:// protocols could be replaced with // inside

href, src, cite, and action tag attributes (tags marked with

rel="external" are skipped).

 Content inside <style> tags could be optionally compressed

using YUI compressor or Your own compressor

implementation.

 Content inside <script> could be optionally compressed

using YUI compressor, Google Closure Compiler or your own

compressor implementation.

 Any content inside <![CDATA[...]]> is preserved.

 All comments are removed. Could be disabled.
 All spaces between tags are removed. Could be disabled.

 unneeded spaces inside tags (multiple spaces, spaces

around =, spaces before />) are removed.

With default settings your compressed layout should be

100% identical to the original in all browsers (only

characters that are completely safe to remove are removed).

Optional settings (that should be safe in 99% cases) would

give you extra savings. Optionally all unnecessary quotes can

be removed from tag attributes (attributes that consist from a

single word: <div id="example"> would become <div

id=example>). This usually gives around 3% page size

decrease at no performance cost but might break strict

validation so this option is disabled by default. About extra

3% page size can be saved by removing inter-tag spaces. It is

fairly safe to turn this option on unless you rely on spaces

for page formatting. Even if you do, you can always

preserve required spaces with or . This option

has no performance impact.

The following Fig. 2 shows the complete architecture of

Propose implemented research methodology

Fig. 1: Complete Architecture of Proposed Implemented

Research Methodology

In the proposed methodology initially all the XML

documents are compressed using XML SAX parser. The

graphical user interface is designed from where user can select

their XMLdocuments that he/she want to compress. The

compressed XML file will be created in the current working

directory with name Compressed XML.xml .as per the file

that has been selected by the user.

III. EXPERIMENTAL DESIGN AND SETUP

We compare the performance of our approach with that of the

following four compressors:

(1) gzip, which is a widely used generic text compressor,

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

137

(2)XMill, which is a well-known XML-conscious

compressor, and

(3)XGrind, which is a well known XML-conscious

compressor that supports querying of compressed XMLdata.

(4)XCQ - Querriable compressor.

All the experiments were run on a notebook computer .To

evaluate the performance of the compressors, we used five

datasets that are commonly used in XML research (see the

experiments in [W. Y. Lam, W. Ng, may 2003et al,Liefke, H.

&Suciu, D. 2000. XMill) Swiss rot, DBLP, ebay, yahoo, and

Shakespeare. We now briefly introduce each dataset.
1. Ebay, yahoo : It consists of many XML documents that

are used in online shopping processes through different

e-shopping and auction web sites. These documents are

converted from database systems and they contain many

empty elements with neither data nor sub-elements inside them

2. Swissprotis the complete description of the DNA sequence

is described in the XML document

3. DBLP is a collection of the XML documents freely

available in the DBLP archive .that illustrates different

papers published in proceeding of conferences and

journals in the field of computer science.

4. Shakespeare is a collection of the plays of William
Shakespeare in XML [AlHamadani, Baydaa (2011) et al].

The first four datasets given above are regarded as

data-centric as the XML documents have a very regular

structure, whereas the last one is regarded as document

centric as the XML documents have a less regular structure

Fig. 2 shows the screenshot of the XML Compressor

where shakespear.xml is compressed. The original size of

file was 7894787 bytes. After compression the file size is

3947393 bytes. The time required for compression is 3047 ms

Fig. 2: Compression of shakespear.xml

Fig. 3 shows the screenshot of the XML Compressor where

SwissProt.xml is compressed. The original size of file was

94460066 bytes. After compression the file size is 84775077
bytes. The time required for compression is 25359 ms.

Fig. 3: Compression of SwissProt.xml

Fig. 4 shows the screenshot of the XML Compressor where
dblp.xml is compressed. The original size of file was

92301286 bytes. After compression the file size is

644495524 bytes. The time required for compression is 25547

ms.

Fig. 4: Compression of dblp.xml

Fig. 5 shows the screenshot of the XML Compressor where

yahoo.xml is compressed. The original size of file was 25327

bytes. After compression the file size is 22694 bytes. The time

required for compression is 125 ms.

Fig. 5: Compression of yahoo.xml

Fig. 6 shows the screenshot of the XML compressor where

ebay.xml is compressed. The original size of file was 35469

bytes. After compression the file size is 34281 bytes. The time

required for compression is 141 ms.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

138

Fig. 6: Compression of ebay.xml

The following graph 1 shows the computed values of CR1,
CR2 and the compression time required for the implemented

methodology.

Graph 1: Comparison of CR1, CR2 and Compression time on

various datasets.

IV. COMPRESSION PERFORMANCE

We now present an empirical study of our XML

compressor performance with respect to compression ratio,

compression time. All the numerical data used to construct

the graphs can be found in the graph in (W. Y. Lam, W. Ng,

et al)

A. Compression Ratio:

The compression ratios are calculated for above discussed

results by using the following equation. There are two

different expressions that are commonly used to define the

Compression Ratio (CR) of a compressed XML document.

CR1 =

bits/byte

CR2 = X
100

The first compression ratio, denoted CR1, expresses the

number of bits required to represent a byte. Using CR1 a

better performing compressor achieves a relatively lower

value. On the other hand, the second compression ratio,

denotedCR2, expresses the fraction of the input document

eliminated. Using CR2, a better performing compressor

achieves a relatively higher value. Graph 2 shows the

compression ratios that are achieved on the above-mentioned

three datasets expressed in CR1 (bits/byte).Both XMill and

XCQ consistently achieve a better compression ratio than

gzip. Our approach compression ration is better than XGrind

and comparable with XCQ.The compression ratio achieved is

relatively high for data-centric documents (i.e., SwissProt,

DBLP, EBay, Yahoo) and relatively low for

document-centric documents (i.e., Shakespeare). This can be

explained by the fact that the Shakespeare document does not

have a regular structure, and therefore XMill, XCQ and our

approach cannot take much advantage of the document

structure during compression.

Graph 2 Compression Ratio for different data set

B. Compression Time:

Following Graph 3shows the compression time (expressed

in seconds) required by the compressors to compress the

XML documents. From the observation it is clear that for our

approach, we are getting better compression time as

compared to other queribale XML compressor. It is clear that

gzip out performs the other compressors in this experiment.

XMill had a slightly longer compression time than gzip, and

XCQ in turn had a slightly longer compression time than

XMill. Our approach has slightly more compression time

than Xmill but lesser compression time than a quriable

XCQand Xgrind. The time overhead can be explained by the

fact that both XMill and XCQ introduce a pre-compression

phase for re-structuring the XML documents to help the main

compression process. The grouping by enclosing tag

heuristic runs faster than the grouping method used in XCQ

and thus XMill runs slightly faster than XCQ. It should be

noted, however, that the data grouping result generated by

XMill may not be as precise as our PPG data streams. This

complicates the search for related data values of an XML

fragment in the separated data containers in a compressed

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

139

file. In addition, the compression buffer window size in

XMill is set at 8 MB, which is optimized solely for better

compression [H. Liefke and D. Suciu. XMill et al]. Such a

large chunk of compressed data is costly in full or partial

decompression. On the other hand, the compression time

required by XGrind is generally much longer than that

required by gzip, XMill, XCQ and our proposed approach.

XGrind uses Huffman coding and thus needs an extra parse

of the input XML document to collect statistics for a better

compression ratio, resulting in almost double the

Compression time required in a generic

compressor

Graph 3: Compression Time for Different Data Sets for

Different Techniques.

C. Implemented Research Methodology

As discussed in previous the compressed XML file is

converted into relational database. The complete architecture is

shown in Fig. 2. There are some disadvantages and limitations

of intermediate representation of compressed data before

decompression for other existing compression techniques. In the

implemented methodology as per the compressed XML file it

is divided and represented by the RDB. By doing so the results

are provided in faster way without any restrictions on memory

and size of data. Any type of query is supported in this

technique. The type of query is not restricted to aggregation

queries.

Fig. 7: Representation Of Article Information In RDB

Extracted From Compressed Dblpfile.

The queries are executed on the intermediate RDB

representation and relevant results of query are returned and

again represented in the form of decompressed XML.

Consider the dblp dataset. It is divided into various

intermediate RDB representations after compression. These

RDB consists of information about articles, international

proceedings, PhD thesis, and master thesis. This information

is represented in separate RDB. This information is extracted

from the compressed XML file. Because of these

representations the user query evaluation will be faster. One

more advantage is during decompression. It is not needed to

decompress the whole dataset. The partial decompression of

the compressed dataset is achieved by using this methodology.

The above figure 8 shows the RDB representation of article

records extracted from the compressed XML dataset.

Fig. 8: Representation Of International Proceedings

Information In RDB Extracted From Compressed Dblp File.

It can be observed that it contains the information regarding

author, title, journal, and volume and publication year of

article. So any user query can be fired on this representation

and the relevant results will be returned to the user. It supports

any type of query it will not be restricted to only one type of

query. It is also observed that this representation consist of

more than 9000 records. So there will not be any

restriction on total number of records as it is in earlier

techniques. Fig. 9 shows the representation of international

proceedings information extracted from the compressed dblp

dataset. As shown it consists of information regarding author,

title and publication year of proceedings. It consists of more

than 8000 records. The following figure 10 shows the

algorithm for XML to RDB conversion process. Initially

node list is created by using SAX parser. This node list

consists of nodes these are nothing but the sub tags in the

main tag. Consider while retrieving the article information

from the dblp dataset the article tag is the root node. The node

items belonging to the article tag are nothing but its child

tags. So the node list will consists of items namely author,

title, journal, volume and year. After generating the node list

the values of each node item will be extracted from the XML

document and it will be placed in the separate field in the RDB.

Input: XML File

Output: RDB

Begin

1. Open an XML file.

2. Establish the connection with RDB using JDBC ODBC

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

140

drivers and created DSN.

3. Generate node list for root node tag.

4. For each node item in node list repeat the following steps

4.1 Extract the values of node items from the XML

document.

 4.2 Insert these values in their respective fields in the RDB

 4.3 Update RDB

5. Close the connection with RDB.

End

D. Querying Compressed XML and Query

Evaluation Proposed Methodology

As discussed in previous section, proposed XML

compression methodology converts the compressed

XML into its relational database representation. This

approach provides an advantage of executing any type of

query as well as decompression time will be less as there

are multiple relational database representations for single
compressed XML file. Due to these representations the

query search space is reduced and relevant results are

returned as a result of decompression by using the concept

of partial decompression. The following Fig. 11 shows an

algorithm used for partial decompression of compressed

XML data.

Input: Compressed XML Relational Database

Representations Output: Partially Decompressed XML Data

Begin

1. Create an instance of Document Builder factory.

2. Create Document Builder.

3. Create new document.

4. Create root element.

5. Establish database connectivity.

6. Retrieve the relevant records as per user query and store it

in result set.

7. Retrieve the metadata from the result for knowing the total

number columns in the table.

8. For each column create an element tag and enclose data

within tag.

9. Parse this complete data using DOM.

10. Send the DOM data to XML file.

End

Query Performance:
The performance of the proposed implemented methodology

is measured by using various performance metrics. From the

query perspective, proposed implemented methodology is

compared with XGrind and Native approach on the basis of

query response times. These metrics are defined below:

Query Response Time (QRT): Total time required to execute

the query.

Query Speedup Factor (QSF): Normalizes the query

response time of Native and XGrind with respect to proposed

methodology, that is,

As indicated in above algorithm the user query is executed on

the compressed XML‟s relational database representation.

The query results are provided in terms of partially

decompressed XML document. For example, In case of article

queries the partial decompression result is provided in

„partialart.xml‟ file. The implemented proposed methodology

is evaluated on the basis of query response time, query

speedup factor and the decompression time. The following
table 1 shows the query performance measure in terms of

query response time and query speedup factor.

I
Query performance

It can be observed from the above table great speedup

factor is achieved by using the proposed implemented

methodology.

DECOMPRESSION TIME:
The XML documents used in study cover a variety of sizes,

document characteristics and application domains, and are listed

below:

Xmark:

This document was generated from Xmark, the

xml-benchmark project, using their xmlgen data generator. It

models an auction database and is deeply-nested with a

large number of elements and attributes. Many of the element

values are long textual passages.

Article, intl. proc, master thesis and PhD thesis :

These documents represent conference and journal entries,

respectively, from the DBLP archive [27].

Shakespeare:

This document is the publicly available XML version of the
plays of Shakespeare. Similar to xmark above, man y of the

element values are long textual passages. Following table 2

shows the comparison of proposed methodology

withXmill, Gzip, XCQ and XGrind on the basis

decompression time. DT indicates the decompression time.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

141

Graph 4: Decompression Times

Graph 4 shows that the decompression required by

different de-compressors. One observation from above

graph is that, in general, Gzip outperforms the other

compressors in de-compression and XMill runs faster than

XCQ and XGrind. Other observation is that XGrind

requires a much longer de-compression time that the other

de-compressors. From the above graph 4 observation it is

observed that decompression time for our proposed

implemented methodology is better than decompression

time for XCQ and XGrind and is comparable with XMill.

V. CONCLUSION AND FUTURE WORK

We recognize that the size problem already hinders the

adoption of xml, since in practice, it subsequently increases

the cost of data processing, data storage and data exchange

over the web. We have presented here our approach for

compression of XML database. As there is a tradeoff among

compression time, compression ratio and decompression

time, we tried to address compression time, ratio issue and

effective query evaluation which is having comparatively

better result. With the experimental evaluation we come to

the conclusion that our compression time and decompression

time for compressed XML datais better with some of the

querible XML compressor and compression ratio is

comparable with exiting querible compressor and query

response time is better than XGrind and native. and of course

there is further room for the improvement in compression

ratio and compression time by designing a natural advance

compressor which can help for updating operation over

compressed data.

There are still rooms for further improvement in terms of

reducing the resource overheads, such as an indexing

scheme, to aid querying compressed XML databases.

REFERENCES
[1] Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu, and

A.Pugliese. Efficient Query Evaluation over Compressed
XML Data. Proceedings of EDBT (2004).

[2] A.Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu,
and A. Pugliese. XQueC: Pushing Queries to Compressed
Data. Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB'03), (2003).

[3] Al-Hamadani, B. T., Alwan, R. F., Lu, J. & Yip, J. 2009.

Vague Content and Structure (VCAS) Retrieval for XML
Electronic Healthcare Records (EHR). Proceeding of the 2009
International Conference on Internet Computing, USA. P:
241-246.

[4] AlHamadani, Baydaa (2011) Retrieving Information from
Compressed XML Documents According to Vague Queries.
Doctoral thesis, University of Huddersfield..

[5] Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin,

R.O. &Lemon C. Baird, I. (2007). An analysis of XML
compression efficiency. Proceedings of the 2007
workshop on Experimental computer science, ACM, San Diego,
California.

[6] Clarke J (2004) The Expat XML parser. Extensible Markup
Language (XML) 1.0 (Second Edition) W3C,
Recommendation, October (2000)

[7] G. Antoshenkov. Dictionary-Based Order-Preserving String
Compression.VLDB Journal 6, page 26-39, (1997). Gerlicher,

A. R. S. (2007), Developing Collaborative XML Editing
Systems, PhD thesis, University of the Arts London, London.

[8] Groppe, J.(2008), SPEEDING UP XML QUERYING, PhD
thesis,ZuglLübeck University, Berlin.

[9] H. Liefke and D. Suciu. XMill: An Efficient Compressor for
XML Data. Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 153-164 (2000).

[10] Harrusi, S., Averbuch, A. &Yehudai, A. 2006. XML Syntax

Conscious Compression. Proceedings of the Data Compression
Conference (DCC‟06), http://www.w3.org/TR/xquery.

[11] J. Cheng and W. Ng. XQzip: Querying Compressed XML
Using Structural Indexing. Proceedings of EDBT (2004).

[12] J. Clark. XML Path Language (XPath), (1999).

http://www.w3.org/TR/xpath.

[13] J. Gailly and M. Adler. Gzip 1.2.4. http://www.gzip.org/.

[14] J. K. Min, M. J. Park, and C. W. Chung. XPRESS: A Queriable
Compression for XML Data. Proceedings of the ACM
SIGMOD International Conference on Management of Data
(2003).

[15] J.M.Martinez.MPEG-7Overview (version9).Error!

Hyperlink reference not valid..

[16] Liefke, H. &Suciu, D. 2000. XMill: an Efficient Compressor

for XML Data. ACM.

[17] Mark nelson, Principal of data compression, pub 1999. Moro,
M. M., Ale, P., Vagena, Z. &Tsotras, V. J. 2008. XML
Structural Summaries. PVLDB '08, Auckland, New Zealand.

[18] Ng, W., Lam, W.-Y. & Cheng, J. (2006) Comparative
Analysis of XML Compression Technologies. World Wide
Web: Internet and Web Information Systems, Vol. 9,
Pages 5-33

[19] Norbert, F. & Kai, G. (2004) XIRQL: An XML query
language based on information retrieval concepts. ACM
Trans. Inf. Syst., 22, 313-356.

[20] P. M. Tolani and J. R. Haritsa. XGRIND: A Query-friendly
XML Compressor. IEEE Proceedings of the 18th International
Conference on Data Engineering (2002).pkzip.
http://www.pkware.com/.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

142

[21] S. Boag et al. Query 1.0: An XML Query Language, Nov.

(2002).

[22] Smith S. Nair XML compression techniques: A survey.
Department of Computer Science ,University of Iowa, USA

[23] T. M. Cover and J. A. Thomas. Elements of Information
Theory.Wiley-Interscience, John Wiley &S ons, Inc., New
York, (1991).The bzip2 and libbzip2 official home
page.http://sources.redhat.com/bzip2/.

[24] Violleau, T. (2001) Java Technology and XML ORACLE.

[25] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene. XCQ: XML
Compression and Querying System. Poster Proceedings, 12th
International World-Wide Web Conference (WWW2003),
May (2003).

[26] WinZip. http://www.winzip.com/.

[27] http://www.informatik.uni-trier.de/_ley/db.

AUTHOR BIOGRAPHY

Vijay S. Gulhane, M.E. in computer Science and Engineering, having more

30+ publication in international journal, Area of research is XML database

compression techniques and is a research scholar in SGB Amravati

university , Amravati.

Dr. M.S.Ali M.Tech., Ph.D., Principal PRMCOE&M,, Bandera, Recognized

research guide with 80+publication in international journal ,Ex chairman

IETE Amravati Centre, Ex- Chairman BOS CSE, SGB Amravati University,

Amravati with 25+ years experience in Academics.

http://www.informatik.uni-trier.de/_ley/db

